

Data Sheet

Customer:	
Part No:	CL-SP1615UHRUYG-02
Sample No:	
Description:	1615 RED, YG
Item No:	

Customer				
Check	Inspection	Approval	Date	

Features

1.6*1.5 *0.6mm package
.Side view
.Compatible with infrared and vapor phase reflow solder process.
.Wide viewing angle
.Pb-free
.RoHS compliant

Description

The CL 1615 SMD LED is much smaller than lead frame type components, thus enable smaller board size, higher packing density, reduced storage space and finally smaller equipment to be obtained. Besides, lightweight makes them ideal for miniature applications etc.

Applications

.General lighting

- .Decorative and Entertainment Lighting
- .Indicators
- .Automotive Telecommunication
- .Switch lights

Device Selection Guide

	Chip Material	Emitted Color	Resin Color
R6	InGaAIP	Brilliant Red	Water Claer
G2	AlGaInP	Brilliant YellouGreen	water Claer

Absolute Maximum Ratings (Ta=25°C)

Parameter	YellouGreen	Red	Units
Power dissipation	50	50	mW
DC Forward Current	24	24	mA
Peak Forward Current [1]	80	80	mA
Reverse Voltage	5	5	V
Operating/Storage Temperature	-40°C To +85°C		

Note:

1/10 Duty Cycle, 0.1ms Pulse Width.

Electro-Optical Characteristics (Ta=25°C)

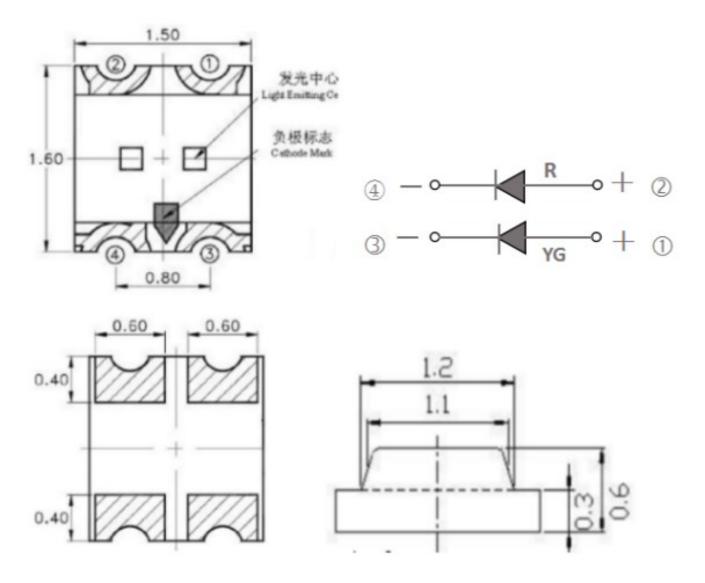
Parameter	Syn	nbol	Min.	Тур.	Max.	Unit	Condition
Reverse Current]	R			10	μΑ	V _R =5V
Viewing Angle	20	$\theta_{1/2}$		120		deg	I _F =20mA
Forward Voltage	V_{F}	R6	1.9		2.2	V	I _F =20mA
		G2	1.9		2.2	v	
Luminous Intensity	Iv	R6	45		180	mcd	I _F =20mA
		G2	18		72		
Doninant Wavalangth	λd	R6	624		640	nm	I
Doninant Wavelength		G2	568		574		I _F =20mA

Notes:

1. Tolerance of Luminous Intensity $\pm 10\%$.

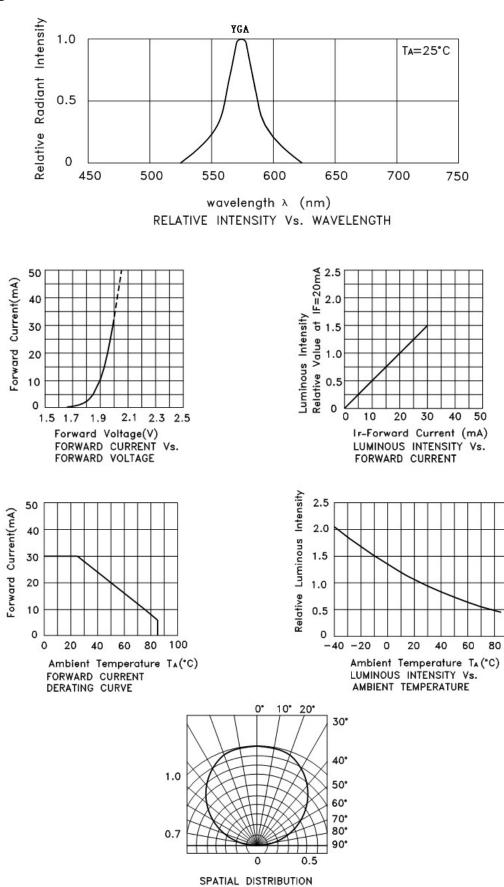
2. Tolerance of Forward Voltage : ± 0.1 V.

3.Tolerance of Dominant Wavelength: ±1nm

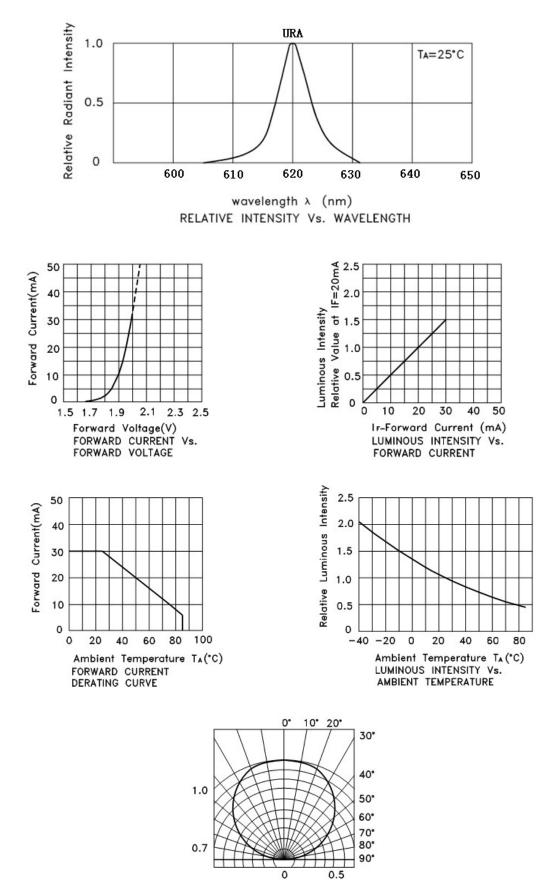


BIN Code	Test condition: @20mA			
UHR	IVmin(mcd)	IVmax (mcd)		
J	45	72		
К	72	115		
L	115	180		
UYG	IVmin(mcd)	IVmax (mcd)		
G	18	28.5		
Н	28.5	45		
J	45	72		

BIN Code	Test condition: @20mA			
UHR	$\lambda_{dmin} (nm)$	$\lambda_{dmax}(nm)$		
1	624	640		
UYG	$\lambda_{dmin}(nm)$	$\lambda_{dmax}(nm)$		
1	568	570		
2	570	572		
3	572	574		

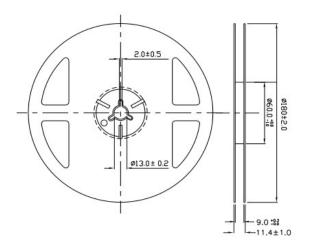

Package Dimensions

Note: Tolerance unless mentioned is ± 0.1 mm, Unit = mm.


Yellow green

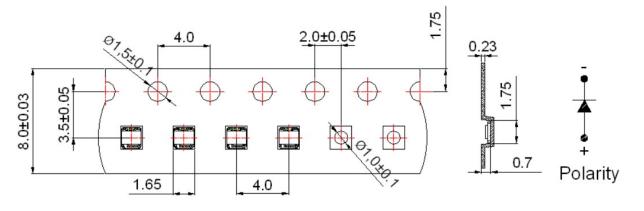
Red

SPATIAL DISTRIBUTION



Label Form Specification

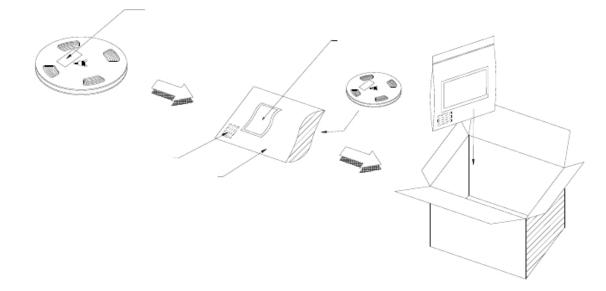
CL-SP1615UHRUYG-02


CPN: Customer's Production Number P/N : Production Number QTY: Packing Quantity CAT: Ranks HUE: Peak Wavelength REF: Reference LOT No: Lot Number

Reel Dimensions

Note: The tolerances unless mentioned is ± 0.1 mm ,Unit = mm

Carrier Tape Dimensions:(Quantity: 4000pcs/reel)



Note:

1. Tolerance unless mentioned is ± 0.1 mm, Unit = mm. 2. Minimum packing amount is 1000/2000 pcs per reel.

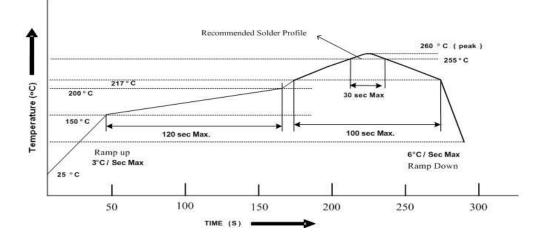
Moisture Resistant Packing Process

Reliability Test Items and Conditions The reliability of products shall be satisfied with items listed below. Confidence level : 90% LTPD: 10%

No.	Items	Test Condition	Test Hours/Cycles	Sample Size	Ac/Re
1	Reflow Soldering	Temp. : 260°C/10sec.	6 Min	22 PCS	0/1
2	Thermal Shock	H : +100°C 5min ∫ 10 sec L : -10°C 5min	300 Cycles	22 PCS	0/1
3	Temperature Cycle	H : +100°C 15min ∫ 5 min L : -40°C 15min	300 Cycles	22 PCS	0/1
4	High Temperature/Humidity Reverse Bias	Ta=85°C,85%RH	1000 Hrs.	22 PCS	0/1
5	Low Temperature Storage	Ta=-40°C	1000 Hrs.	22 PCS	0/1
6	High Temperature Storage	Ta=100°C	1000 Hrs.	22 PCS	0/1
7	DC Operation Life	Ta=25°C IF = 20 mA	1000 Hrs.	22 PCS	0/1

Precautions For Use

1. Over-current-proof


Customer must apply resistors for protection , otherwise slight voltage shift will cause big current change (Burn out will happen).

- 2. Storage
 - 2.1 Do not open moisture proof bag before the products are ready to use.
 - 2.2 Before opening the package, the LEDs should be kept at 40°C or less and 90%RH or less.
 - 2.3 The LEDs should be used within a year.
 - 2.4 After opening the package, the LEDs should be kept at 30°C or less and 60%RH or less.
 - 2.5 The LEDs should be used within 168 hours (7 days) after opening the package

2.6 If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following J-STD-33 Standard.

3. Soldering Condition

3.1 Pb-free solder temperature profile

- 3.2 Reflow soldering should not be done more than two times.
- 3.3 When soldering, do not put stress on the LEDs during heating.
- 3.4 After soldering, do not warp the circuit board.
- 4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350°C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.