

Data Sheet

Customer:	
Part No:	CL-SFC281IR-940-B-02
Sample No:	
Description:	2835 IR 940nm 0.5W
Item No:	

Customer			
Check	Check Inspection		Date

Features

■ Package Size: $2.8(L) \times 3.5(W) \times 0.8(T)$ mm

■ Silicone Packed

■ Suitable for different working environment

■ Super long lifetime: 50000HRs

■ Anti UV

■ Wide viewing angle $(2^{\theta} 1/2 = 120^{\circ})$

Applications

■ Indoor lighting: Fluorescent lamp, tube

 Commercial illumination and displays: Advertising words, light box

LCD Backlighting

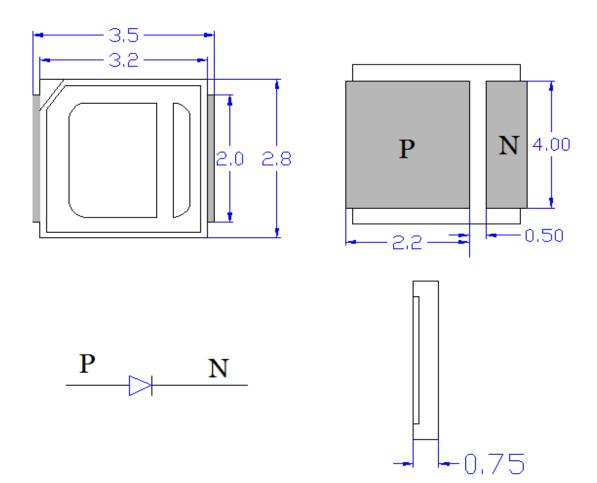
Decorative lighting: light strip

Automotive interior auxiliary lighting

Other illumination and displays

Device Selection Guide

ITEM	MATERIALS	
Resin	Silicon	
Bonding wire	25 Em Au	
Lens color	Water Clear	
Dice	AlGalnP	



REFLECTOR COATING TYPE HIGH-PERFORMANCE

LEDs High Performance SMD Single-Color Top LEDs

1. Dimensions

(Units):(mm)

NOTES:

- 1. All dimensions are in millimeters (inches);
- 2 Tolerances are 0.2mm (0.008inch) unless otherwise noted

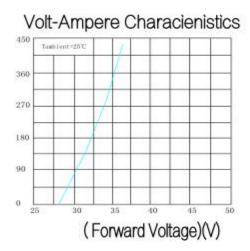
Absolute maximum ratings

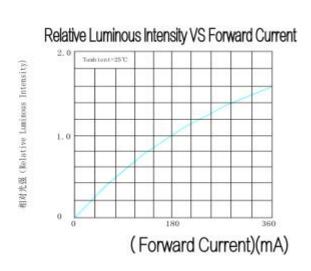
(TA=25°C)

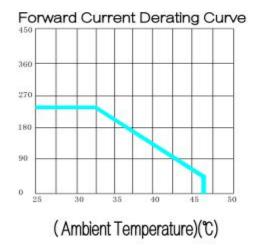
Paramete	Symbol	Rat	Unit	
Forward current	I F	150	mA	
Reverse voltage	VR	5	V	
Power dissipation	Pd	0.5	W	
Operating Temperature	ТОР	-40 ~+80	${\mathbb C}$	
Storage Temperature	Tstg	-40 ~+100	${\mathbb C}$	
Peak Forward Current (Duty 1/10 @ 1KHz)	lFP	300	mA	
Lead Soldering Temperature (5mm From Body)	TSOI	260℃ For 5		
	1501	Seconds)/°C		

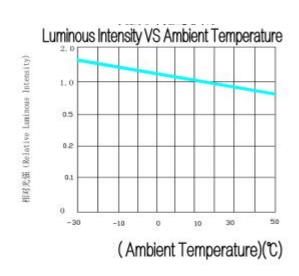
Electro-optical characteristics

 $(TA=25^{\circ}C)$


Parameter	Test Condition	Symbo	Value			Unit
			Min	Avg	Max	Onit
CIE Coordinates	I F =150mA	X				
CIE Coordinates	11 -130IIIA	Y				
Forward voltage	I F =150mA	Vf	1.0		1.6	V
Wavelength	I F =150mA	nm		940		nm
Luminous Flux	I F =150mA	ф				Lm
Luminous intensity	I F =150mA	Iv	20		28	mW
Viewing Angle	////////	2θ1/2	///////	120	///////	deg
Reverse Current	////////	IR	///////	//////	10	EA


^{*} Notice: When shipped, the voltage is 0.2 bins, and the brightness is 2mW bins





(Optical-Electrical Characteristic)

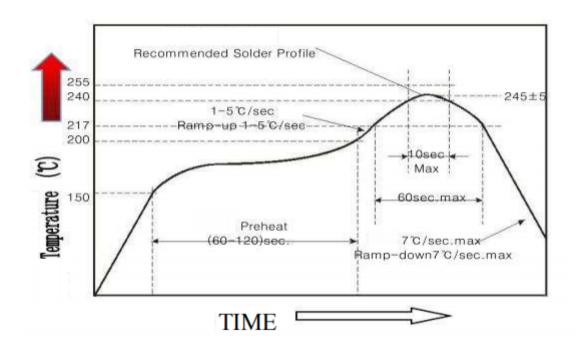
Reliability Test Items And Conditions

TestItems	Reference	Test Conditions	Time	Quantity	Criterion
Thermal Shock	MIL-STD-202G	-40°C (30min) -100°C (30min)	100Cycles	22	0/22
Temperature	JEITA ED-4701 200 203	-10℃~65℃; 0%~90%RH	10cycles	22	0/22
High temperature storage	JEITA ED -4071 200 201	Ta=100℃	1000H	22	0/22
Low temperature storage	E JEITA ED -4071 200 202	Ta=-40°C	1000Н	22	0/22
High temperature high humidity st		Ta=60℃; RH=90%	1000H	22	0/22
High temperature	JESD22-A108D	Ta=80°C	1000H	22	0/22
Normal temperatu	re JESD22-A108D	Ta=25℃ IF=150mA	1000H	22	0/22
Resistance to soldering heatt	GB/T 4937, II , 2.2&2.3	Tsol*=(240±5)℃ 10secs	2 times	22	0/22

Criteria For Judging Damage

TestItems	Symbol	Test Condition	s Criteria For Judging Damage
ForwardVoltage	VF	I F =I FT	Initial Data±10%
RecerseCurrent	IR	V R =5V	I R ≤10uA
LuminousIntensity	IV	I F=I FT	Average I V attenuation \leq 30%; single I V attenuation \leq 50%
Resistance to soldering heat			No cracks inside the material, no material bursting, peeling, no death light

^{*}Note Tsol-Temperature of tin liquid


(Useful hint):

1, Hand Soldering

A soldering iron of less than 20W is recommended to be used in Hand Soldering. Please keep the temperature fo the soldering iron under $360\,^{\circ}$ C while soldering. Each terminal fo the LED is to go for less than 3 second and for one time only.

Be careful because the damage of the product is often started at the time of the hand soldering.

2.Reflow Soldering: Use the conditions shown in the under Figure of Pb-Free Reflow Soldering

- Reflow soldering only allowed to do once
- Stress on the LEDs should be avoided during heating in soldering process
- After soldering, do not deal with the product before its temperature drop down to room Temperature.

Precautions(1)

- 1. Storage
- Moisture proof and anti-electrostatic package with moisture absorbent material is used, to keep moisture to aminimum.
- Before opening the package, the product should be kept at 30°C or less and humidity less than 60% RH, and beused within a year.
- After opening the package, the product should be stored at 30°C or less and humidity less than 10%RH, and besoldered within 24 hours (1day). It is recommended that the product be operated at the workshop condition of 30°C or less and humidity less than 60%RH.
- If the moisture absorbent material has fade away or the LEDs have exceeded the storage time, baking treatment should be performed based on the following condition: $(70\pm5)^{\circ}$ °C for 24 hours

2. Static Electricity

Static electricity or surge voltage damages the LEDs. Damaged LEDs will show some unusual characteristic such as the forward voltage becomes lower, or the LEDs do not light at the low current. even not light.

All devices, equipment and machinery must be properly grounded. At the same time, it is recommended that wrist bands or anti-electrostatic gloves, anti-electrostatic containers be used when dealing with the LEDs.

Precautions (2)

3. Vulcanization

LED curing is due to sulfur being in bracket and the +1 price of silver in the chemical reaction generated Ag2S in the process. It will lead to the capacity of reflecting of silver layer reducing, light color temperature drift and serious decline, seriously affecting the performance of the product. So we should take corresponding measures to avioding vulcanization, such as to avoid using sulphur volatile substances and keeping away from high sulphur content of the material.

4. Safety Advice For Human Eyes

Viewing direct to the light emitting center of the LEDs, especially those of great Luminous Intensity will cause great hazard to human eyes. Please be careful.