

Data Sheet

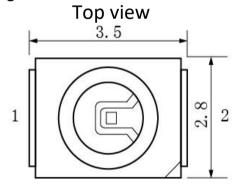
Customer:	C1A001151		
Part No:	CL-SF681IR-850-01(H)		
Sample No:			
Description:	<u>IR SMD</u>		
Item No:			
Sample No: Description:			

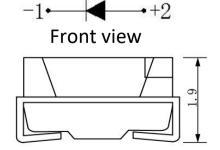
Customer					
Check	Inspection	Approval	Date		

CL					
Drawn	Check	Approval	Date		
			2024/4/24		

Features:

- . High radiant power and high radiant intensity.
- . Low forward voltage.
- . Good Reliability and Long Life
- . Soldering methods: reflow soldering
- . This product doesn't contain restriction substance, comply ROHS standard
- . Pb free

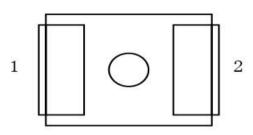

Applications


- . Remote Control.
- . Smoke detector
- . Infrared applications systems
- . Infrared remote control emission

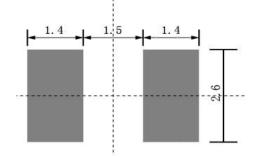
Description

- . This infrared LED is a low power consumption diode in SMD package.
- This model has the advantages of strong transmitting power and uniform light angle.
- . The device is spectrally matched with phototransistor ,
- photodiode and infrared receiver module.

Package Dimensions in millimeters



Notes:


- 1 . All dimensions are in millimeters.
- 2. All dimension tolerance is $\pm 0.2 \text{mm}$ unless otherwise noted.
- 3. Specifications are subject to change without notice

Bottom view

Recommended pad

Selection Guide

Part No.	Chip Materials	Lens Type	
SF681IR-850-01(H)	AlGaAs/GaAs	Water Clear	

Electrical And Optical Characteristics (Ta=25℃)

Parameter	Symbol	Min	Тур.	Max	Units	Condition
Padiant Intensity	le	2	-	12	\\/	IF=30mA
Radiant Intensity	ie	10	-	25	mW/sr	IF=100mA
Forward Voltago	VF	1	-	1.8	V	IF=30mA
Forward Voltage	۷F	1.2	-	2.2		IF=100mA
Reverse Current	lR	-	-	10	uA	V _R =5V
Peak Wavelength	λр	-	850	-	nm	IF=100mA
Controlled Angle	201/2	-	120	1	deg	IF=100mA

Note:

- 1. $2\theta 1/2$ is the angle from optical centerline where the luminous intensity is $2\theta 1/2$ the optical centerline value.
- 2. the above luminous intensity measurement allowance tolerance $\pm 10\%$

Absolute Maximum Ratings (Ta=25℃)

Parameter	Symbol	Ratings	Units	Notice
Continuous Forward Current	lF	100	mA	
Peak Forward Current	lfp	150	mA	1/10 Dut cycle,0.1ms pulse width
Power Dissipation	PD	220	mw	
Reverse Voltage	VR	5	V	
Operating Temperature	Topr	-40~+85	$^{\circ}\!$	
Storage Temperature	Tstg	-40~+100	$^{\circ}\!$	

REV NO: A/1 Page: 2 of 7

Typical Optical-Electrical Characteristic Curves

Fig.1 Forward Current Vs
Forward Voltage

(Amount of the content of the content

Fig.3 Relative Forward Voltage Vs Ambient Temperature

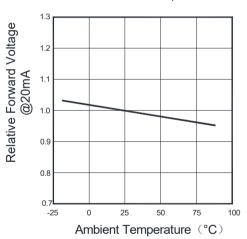


Fig.5 Spectral Distrbution

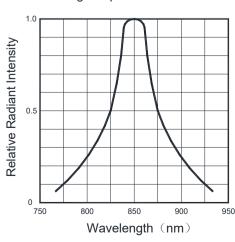


Fig.2 Relative Radiant Intensity
Vs Forward Current

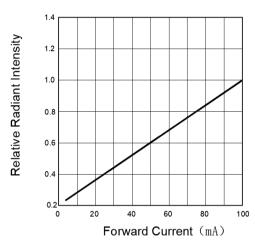


Fig.4 Relative Radiant Intensity
Vs Ambient Temperature

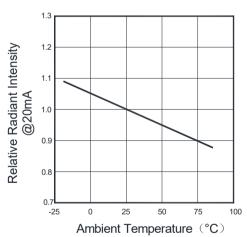
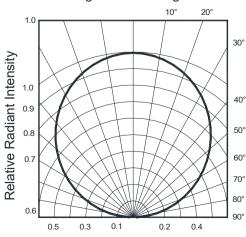



Fig.6 Radiant Diagram

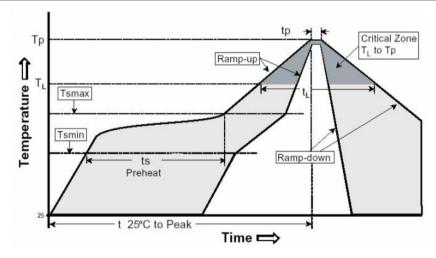
REV NO: A/1 Page: 3 of 7

Reliability Test Item And Condition

Test Item	Test Condition	Time	Quantity	Ac/Re
Life Test	Ta=25℃±5℃ IF=5mA	1000H	22	0/1
High Temperature Life Test	Ta=85°C±5°C	1000H	22	0/1
Storage at High Temperature	Ta=100±5℃	1000H	22	0/1
Storage at Low Temperature	Ta=-40±5℃	1000H	22	0/1
Storage at High Temperature/High Humidity	Ta:85±5℃,RH:85±5%	1000H	22	0/1
Temperature cycle	100℃~25℃~-40℃~25℃ (30min)(5min)(30min) (5min)	100 Cycles	22	0/1
Red ink	Ta=100±5℃	2H	22	0/1
Reflow soldering	Temp:260°C max T=10 sec	3 times	22	0/1

The technical information shown in the data sheets are limited to the typical characteristics and circuit examples of the referenced products. It does not constitute the warranting of industrial property nor the granting of any license.

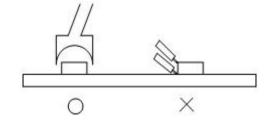
REV NO: A/1 Page: 4 of 7



SMT Reflow Soldering Instructions

- 1. The number of reflow soldering shall not exceed two times,and the time from the second processing to the first completion shall not exceed 24H
- 2. When soldering, do not put stress on the LEDs during heating.
- 3.Reflow temperature distribution (Acc.to J-STD-020D)

Duo Elo Ecoturo	Sn-Pb Eutec	tic Assembly	Pb-Free Assembly		
Profile Feature	Large Body	Small Body	Large Body	Small Body	
Average ramp-up rate (TL to Tp)	3°C/second max.		3°C/second max.		
Preheat -Temperature Min(TSmin) -Temperature Max(TSmax) -Time(min to max)(ts)	100°C 150°C 200°C 60-120 seconds 60-180 seconds		\mathbb{C}		
Tsmax to TL -Ramp-up Rate			3°C/seco	ond max.	
Time maintained above: -Temperature(TL) -Time(tL)	183°C 60-150 seconds		217°C 60-150 seconds		
Peak Temperature(Tp)	225+0/-5°C	240+0/-5℃	245+0/-5°C	260+0/-5℃	
Time within 5°C of actual Peak Temperature(tp)	10-30 seconds	10-30 seconds	10-30 seconds	20-40 seconds	
Ramp-down Rate	6°C/second max.		6°C/second max.		
Time 25℃ to Peak Temperatur	6 minutes max.		8 minutes max.		



Soldering iron

- 1. When hand soldering, the temperature of the iron must less than 350°C for 3 seconds
- 2. The hand solder should be done only one times

Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used(as below figure). It should be confirmed in advance whether the characteristics of LEDs will or will not be damaged by repairing.

REV NO: A/1 Page: 5 of 7

Storage

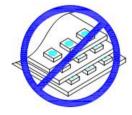
The package is sealed:

- 1.Recommended storage condition :At 5 $^{\circ}$ C $^{\sim}$ 30 $^{\circ}$ C and relative humidity 90% RH max.
- 2.It is recommended that SMD out of their original packaging are used within Three months.

The package is opened:

- 1. Completed within 24 hours.
- 2.Stored at5°C~30°C and 60% RH or less.
- 3.LEDs stored more than 24 hours should be baked at about 65 $^{\circ}$ C ±5 $^{\circ}$ C for at least 24 hours before solder assembly.

ESD

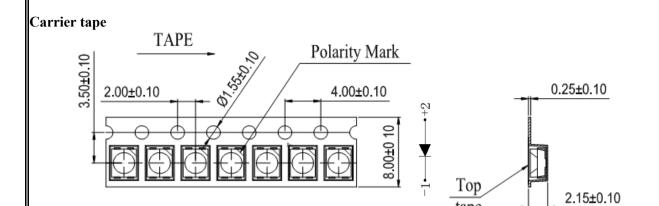

Static Electrisity will damage the LED.

The following procedures may decrease the possibility of ESD damage.

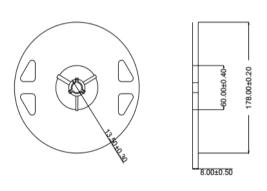
- 1.All productive machinery and test instruments must be electrically grounded.
- 2. Use a condustive wrist band or anti-electostatic glove when handling these LEDs.
- 3. Manintain a humidity level of 50%RHor higher in production areas.
- 4. Use anti-static packaging for transport and storage.

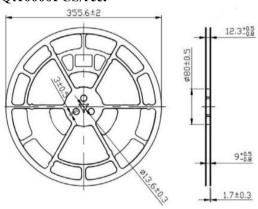
Handling Precautions

- ${\bf 1.} Do \ not \ stack \ together \ assembled \ PCBs \ containing \ LEDs. \ Impact \ may \ scratch \ the \ silicone \ lens \ or \ damage.$
- $2.\mbox{Not}$ available in the situation of acidity for PH.
- 3. Electrostatic sensitive device

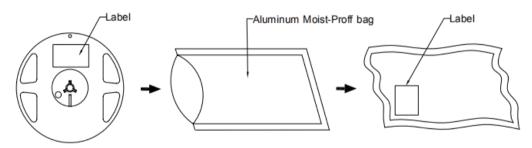


REV NO: A/1 Page: 6 of 7



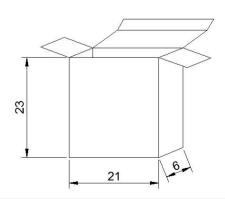


MPQ:2000PCS/reel

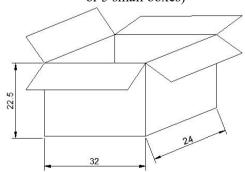


SPQ:10000PCS/reel

tape



Moisture Resistant Packaging



Cardboard Box

Maximum packing quantity (5 packs of material)

Maximum packing quantity (27 bags of material or 5 small boxes)

REV NO: A/1 Page :7 of 7