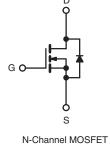

N-Channel 60 V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^{a, e}	Q _g (Max)			
60	0.024 at V _{GS} = 10 V	50	66 nC			
00	0.028 at V _{GS} = 4.5 V	40	00110			

FEATURES


- Halogen-free According to IEC 61249-2-21 Definition
- Surface Mount
- Available in Tape and Reel
- Dynamic dV/dt Rating
- Logic-Level Gate Drive
- Fast Switching
- Compliant to RoHS Directive 2002/95/EC

Top View

ABSOLUTE MAXIMUM RATINGS (T_C	= 25 °C, unless otherv	vise noted)		
PARAMETER	SYMBOL	LIMIT	UNIT	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _{GS}	± 20	v	
Continuous Drain Current ^f	$\frac{1}{100} \frac{1}{100} \frac{1}$			
Continuous Drain Current $V_{GS} at 10 V$ $T_C = 100 °C$			36	A
Pulsed Drain Current ^a	I _{DM}	200		
Linear Derating Factor		1.0	W/°C	
Linear Derating Factor (PCB Mount) ^e		0.025	VV/ C	
Single Pulse Avalanche Energy ^b	E _{AS}	400	mJ	
Maximum Power Dissipation T _C = 25 °C		— P _D	150	w
Maximum Power Dissipation (PCB Mount) ^e T _A = 25 °C		гD	3.7	vv
Peak Diode Recovery dV/dt ^c	dV/dt	4.5	V/ns	
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to + 175	°C	
Soldering Recommendations (Peak Temperature) ^d		300 ^d		

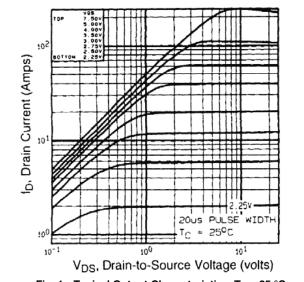
Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. $V_{DD} = 25 \text{ V}$, starting $T_J = 25 \text{ °C}$, $L = 179 \text{ }\mu\text{H}$, $R_g = 25 \Omega$, $I_{AS} = 51 \text{ A}$ (see fig. 12). c. $I_{SD} \le 51 \text{ A}$, dl/dt $\le 250 \text{ A/}\mu\text{s}$, $V_{DD} \le V_{DS}$, $T_J \le 175 \text{ °C}$.

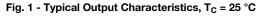
e. When mounted on 1" square PCB (FR-4 or G-10 material).

f. Current limited by the package, (die current = 51 A).

d. 1.6 mm from case.



PARAMETER	SYMBOL	TYP		MAX.			UNIT	
Maximum Junction-to-Ambient	R _{thJA}	- 62			°C/W			
Maximum Junction-to-Ambient (PCB Mount) ^a	R _{thJA}	- 40						
Maximum Junction-to-Case (Drain)	R _{thJC}	- 1.0						
l ote . When mounted on 1" square PCB (FR-4 c	or G-10 material)).						
SPECIFICATIONS (T _J = 25 °C, u	nless otherw	ise noted)						
PARAMETER	SYMBOL	TES	T CONDITI	ONS	MIN.	TYP.	MAX.	UNI
Static		:			•	•	•	
Drain-Source Breakdown Voltage	V _{DS}	V _{GS}	= 0, I _D = 25	i0 μA	60	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference to 25 °C, $I_D = 1 \text{ mA}$		-	0.070	-	V/°C	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$		1.0	-	2.5	V	
Gate-Source Leakage	I _{GSS}	,	V _{GS} = ± 10	V	-	-	± 100	nA
		$V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$		-	-	25		
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 48 V,	$V_{GS} = 0 V,$	T _J = 150 °C	-	-	250	μA
	_	V _{GS} = 10 V		= 21 A ^b	-	24	-	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 4.5 V		= 15 A ^b	-	28	-	Ω
Forward Transconductance	g _{fs}	$V_{DS} = 25 \text{ V}, \text{ I}_{D} = 21 \text{ A}^{\text{b}}$		23	-	-	S	
Dynamic	0.0				1		1	
Input Capacitance	C _{iss}				-	1900	-	
Output Capacitance	C _{oss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1.0 MHz, see fig. 5		_	920	-	pF	
Reverse Transfer Capacitance	C _{rss}			_	170	-		
Total Gate Charge	Qg			_	-	66	+	
Gate-Source Charge	Q _{gs}	V _{GS} = 5.0 V		A, $V_{DS} = 48 V$,	_	-	12	nC
Gate-Drain Charge	Q _{gd}		see fig. 6 and 13 ^b		_	_	43	
Turn-On Delay Time	t _{d(on)}			_	17	-		
Rise Time	t _r		00.1/			230	_	- ns
Turn-Off Delay Time	t _{d(off)}		= 30 V, I _D = R _D = 0.56 Ω	2, see fig. 10 ^b	-	42	_	
Fall Time	t _f	_		_	110	_	-	
Internal Drain Inductance	L _D	Between lead, 6 mm (0.25") from package and center of die contact		-	4.5	-	- nH	
Internal Source Inductance	L _S			-	7.5	-		
Drain-Source Body Diode Characteristic	s							
Continuous Source-Drain Diode Current	I _S	MOSFET symbol showing the integral reverse p - n junction diode		-	-	50 ^c	- A	
Pulsed Diode Forward Current ^a	I _{SM}			-	-	200		
Body Diode Voltage	V _{SD}	$T_J = 25 \text{ °C}, I_S = 51 \text{ A}, V_{GS} = 0 \text{ V}^{b}$		-	-	2.5	V	
Body Diode Reverse Recovery Time	t _{rr}	$T_{\rm J} = 25 ^{\circ}\text{C}, I_{\rm F} = 51 \text{ A}, \text{dl/dt} = 100 \text{A/}\mu\text{s}^{\rm b}$		-	130	180	ns	
Body Diode Reverse Recovery Charge	Q _{rr}			-	0.84	1.3	μC	
Forward Turn-On Time	t _{on}	Intringio tu	rn on time i	s negligible (turr	, on is dou	ninatod b	vil and	


Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Current limited by the package, (Die Current = 51 A).

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

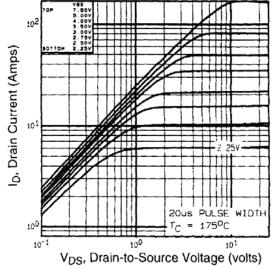
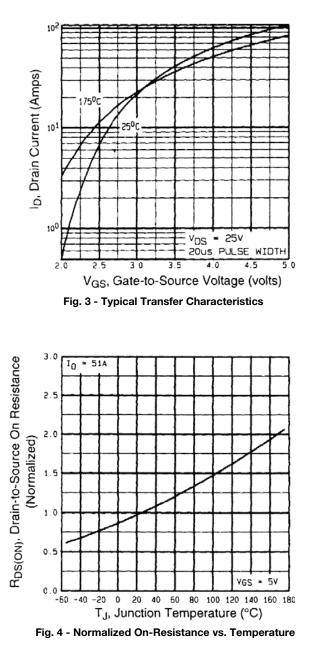



Fig. 2 - Typical Output Characteristics, T_C = 150 °C

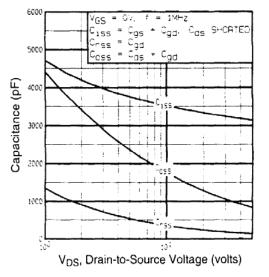


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

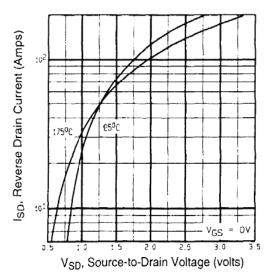


Fig. 7 - Typical Source-Drain Diode Forward Voltage

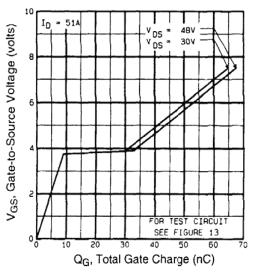


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

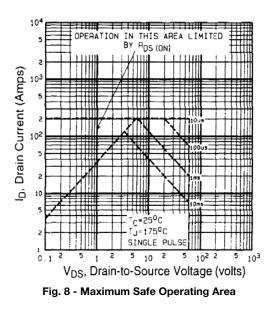


Fig. 9 - Maximum Drain Current vs. Case Temperature

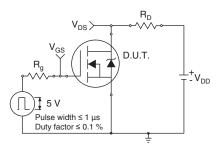


Fig. 10a - Switching Time Test Circuit

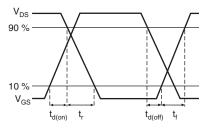
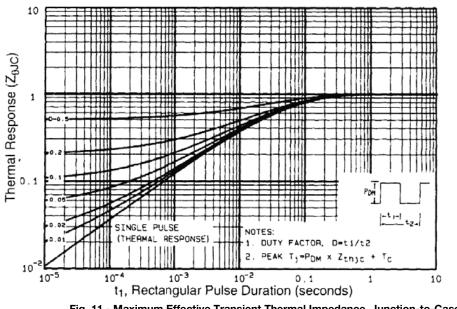



Fig. 10b - Switching Time Waveforms

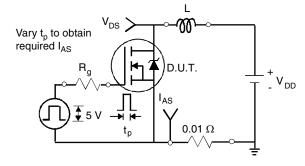


Fig. 12a - Unclamped Inductive Test Circuit

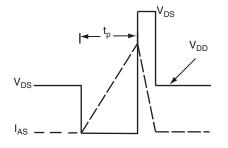


Fig. 12b - Unclamped Inductive Waveforms

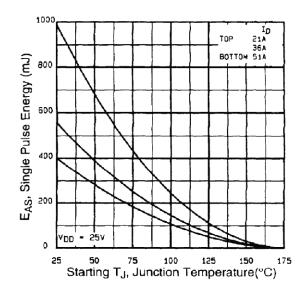
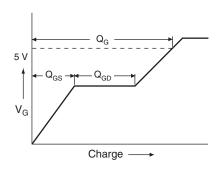
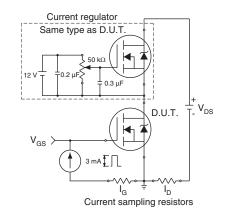
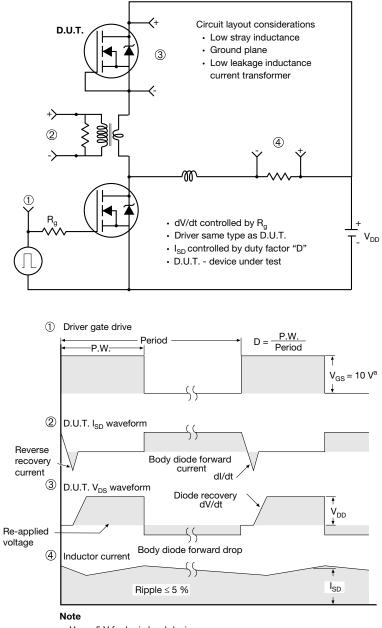
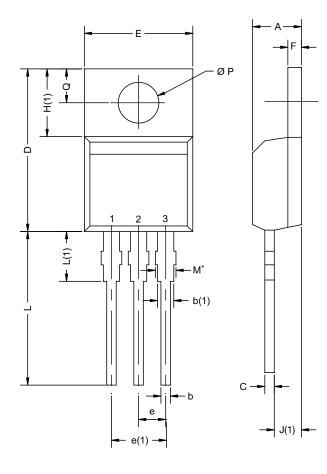


Fig. 12c - Maximum Avalanche Energy vs. Drain Current


Fig. 13a - Basic Gate Charge Waveform

Peak Diode Recovery dV/dt Test Circuit



a. V_{GS} = 5 V for logic level devices

Fig. 14 - For N-Channel

TO-220AB

	MILLIMETERS		INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.25	4.65	0.167	0.183	
b	0.69	1.01	0.027	0.040	
b(1)	1.20	1.73	0.047	0.068	
С	0.36	0.61	0.014	0.024	
D	14.85	15.49	0.585	0.610	
Е	10.04	10.51	0.395	0.414	
е	2.41	2.67	0.095	0.105	
e(1)	4.88	5.28	0.192	0.208	
F	1.14	1.40	0.045	0.055	
H(1)	6.09	6.48	0.240	0.255	
J(1)	2.41	2.92	0.095	0.115	
L	13.35	14.02	0.526	0.552	
L(1)	3.32	3.82	0.131	0.150	
ØΡ	3.54	3.94	0.139	0.155	
Q	2.60	3.00	0.102	0.118	
ECN: X12- DWG: 547	0208-Rev. N, 1	08-Oct-12	•	•	

Notes

* M = 1.32 mm to 1.62 mm (dimension including protrusion) Heatsink hole for HVM

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.tw)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.tw)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.