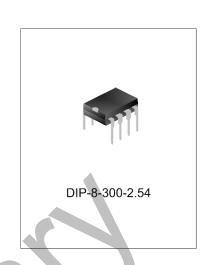


高精度低成本PSR LED恒流驱动器

描述

SD6602D 是一款高精度、低成本的原边反馈 LED 恒流驱动芯片,应用于反激隔离 LED 照明。

芯片工作在电感电流断续模式,适用于 90Vac~265Vac 输入电压、12W 以下输出功率。

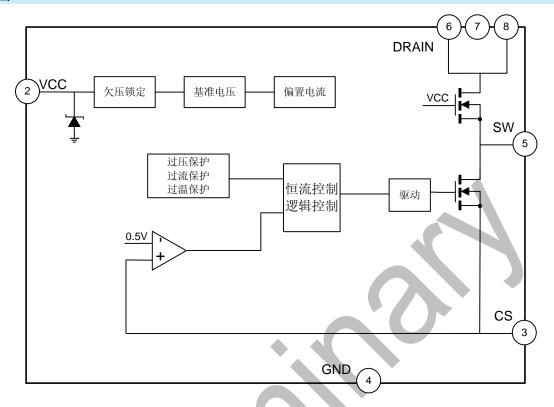

SD6602D 采用特有的恒流控制方式,电流精度达到±3%以内,并可通过峰值电流采样电阻设定输出电流。芯片内部集成 600V 功率 MOS 开关,采用原边反馈控制模式,无需环路补偿,无需光耦、TL431、变压器辅助绕组等元件,节约了系统成本和体积。

芯片内部集成 LED 开路/短路保护; 原边过流保护、过压保护、过温保护等,以提高系统的可靠性。

SD6602D 采用 DIP-8-300-2.54 封装。

主要特点

- ◆ ±3%LED 输出电流精度
- ◆ 无须辅助绕组的原边反馈控制技术
- 高效率、低系统成本
- ◆ 内部集成 600V 功率管
- ◆ 内置线电压补偿
- ◆ 无需环路补偿
- 内置前沿消隐电路
- ◆ LED 短路/开路保护
- 原边逐周期过流保护
- ◆ CS 管脚短路保护
- ◆ 欠压保护
- ◆ 过温保护


应用

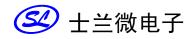
- ◆ GU10 LED 射灯
- ◆ LED 球泡灯
- ◆ PAR 灯
- ◆ 其他 LED 照明

产品规格分类

产品名称	封装类型	打印名称	材料	包装
SD6602DTR	DIP-8-300-2.54		无铅	编带

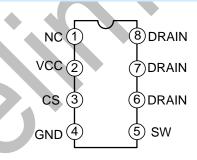
内部框图

极限参数(除非特殊说明,Tamb=25°C)


参数	符号	参	数	范	围	单 位
MOS管的极限参数						
内部高压MOS漏极到源极耐压	V_{DS}		60	0		V
电路的极限参数						
VCC引脚最大电源电流	ICC_MAX		5			mA
CS电流采样端	V _{CS}		-0.3	~6		V
内部高压MOS管源极电压	Vsw		-0.3~	-20		V
功耗	P _{DMAX}		0.4	5		W
工作结温	TJ		-40~	150		°C
贮存温度范围	T_{STG}		-55~	150		°C
ESD (人体模式)	ESD		25	00		V

电气参数(除非特殊说明, V_{cc}=13V, T_{amb}=25°C)

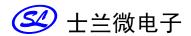
参数	符号	测试条件	最小值	典型值	最大值	单位
供电电源部分						
VCC 钳位电压	V _{cc_clamp}	0.22mA	14.5	15	16	V
启动电流	I _{ST}	V _{CC} = 10V	40	55	70	μΑ
VCC 工作电流	I _{OP}	CS=0; VCC= V _{on} -1V	120	150	180	μΑ


版本号: 0.1

http://www.silan.com.cn

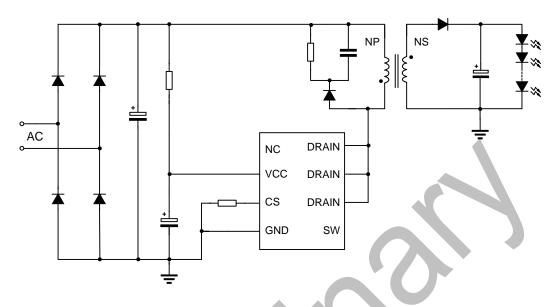
参数	符号	测试条件	最小值	典型值	最大值	单位
启动阈值电压	V _{ST}	VCC 电压上升		11.7		V
关断阈值电压	V _{SP}	VCC 电压下降		7.6		V
电流采样						
电流检测阈值	V _{CS_TH}		490	500	510	mV
前沿消隐时间	T _{LEB}			300		nS
芯片关断延时	T _{DELAY}			200	-	nS
工作频率						
最小工作频率	F _{MIN}			3.5		KHZ
最大工作频率	F _{MAX}			70		KHZ
最大占空比	D _{MAX}			40		%
功率管						
功率管导通阻抗	R _{DSON}			3.7	1	Ω
功率管击穿电压	BV _{DSS}			600	-	V
功率管漏电流	I _{DSS}			-	10	uA
过温保护部分						
过热检测	T _{sd}		170	180		°C
过热迟滞	T _{sdhys}		10	15	20	°C

管脚排列图

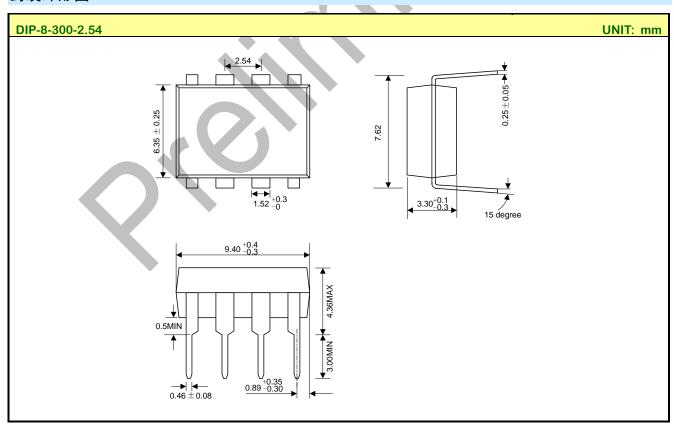


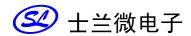
管脚说明

管脚号	管脚名称	I/O	功 能 描 述
1	NC	G	空脚,必须悬空
2	VCC	Р	供电电源;
3	CS	I	电流采样端;
4	GND	I	地;
5	SW	0	内部高管功率管源极;
6、7、8	DRAIN	I	内部高管功率管漏极;


版本号: 0.1

http://www.silan.com.cn

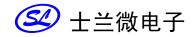

应用电路图


典型应用如下图:

注: 以上线路及参数仅供参考,实际的应用电路请在充分的实测基础上设定参数。

封装外形图

MOS电路操作注意事项:


静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- ◆ 装配过程中使用的工具必须接地。
- 必须采用导体包装或抗静电材料包装或运输。

声明:

- 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最
- ◆ 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整 机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- 产品提升永无止境, 我公司将竭诚为客户提供更优秀的产品!

产品	名称:	SD6602D	文档类型:	说明	书		
版 权: 村		杭州士兰微电子股份有限公司	公司主页:	http://www.silan.com.cn			
版	本:	0.1		作	者:	席德武	
修改	记录:						
	1. 初稿	I					

